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NOTATION*

Geometrical and Elastomechanical Variables /3*

t [sec] Time

x, y, z [m] Cartesian coordinates- of the.,,
reference system rigidly attached
with the central position of the
oscillating wing; coordinate
direction according to norm LN9300

C(x, y, t) [m] Oscillation motion of lifting
surface

x0(Y) [m] Coordinate of lifting surface
center

xd [m] Coordinate of wing rotation axis

x (y) [m] Coordinate of lifting surface
leading edge

xh(Y) [m] Coordinate of lifting surface
trailing edge

xRCY) [ml Coordinate of rudder leading edge

x (y) Em] Coordinate of reference axis of
the local moment

X Dimensionless coordinate,
Equation (43)

Xm Coordinate of reference axis of
local moment, Equation (46)

5 Dimensionless coordinate = x/c

u, e Elliptical coordinates in the /4
plane y = const, Equation (2)

cos ' Coordinate in span direction = y/s

*A physical system of measures with the units kg, m, sec
for mass, length, and time is used.

'**Numbers in the margin indicate pagination of original
foreign text.



E Em] Lifting surface chord

c [m] One-half lifting surface chord
= 1/2

b [m] Span of lifting surface

s [m] Semispan of lifting surface = b/2

S (y) Distance of rotational axis from
lifting surface center l[Xdx -X(y)l/c

F [m2] Wing area

A Wing aspect ratio = b2 /F

B Rotation amplitude of lifting
surface

C Rotation amplitude of rudder

v [s'] Oscillation frequency

S[s -'] Complex circular frequency = 2Tiv

Aerodynamic Variables

V [m s- ] Incident flow velocity

w [m s - '] Downwind /5

W* Complex reduced frequency, referred
to one-half of the lifting surface
chord = wc/V

Complex reduced frequency, referred
to one-half the span = ws/V

S[kg m-ls-'] Air viscosity

p [ig m- ] Air density

Re Reynolds number = Vlp/p

Ap [kg m-ls -2 ] Pressure jump at lifting surface,
Equations (10) and (21)

H Amplitude of reduced pressure jump
at lifting surface, Equation (5)

Ib' Ic Derivative of reduced pressure
jump withl respect to the :amplitudes

B and'C; 'Equations (69)and (70)
P. Pressure coefficient-for- --

simultaneous fin.and rudder:,
rotational oscillations, Equation
(.71)

V



.T(*) Vortex drag function for two-
dimensional flow, Equation (-9)

T1 (-*, Y) Modified vortex drag function, /6
Equation (56)

K(y) - [m] Characteristic function: K (y) for
two-dimensional flow

G(u, 0, 0') Green function

K.0, K1 Modified Hankel functions

SnC(-, 'F Auxiliary function

f( w*) Auxiliary function

T (-x) Tchebyscheff polynomial of the
first kind

J(y Downwind integral

L [kg m s-2 ] Amplitude of wing aerodynamic force

M [kg m 2 s- 2 ] Amplitude of wing pitch moment

R [kg m s- 2] Amplitude of rudder aerodynamic
force

N [kg m 2s- 2 ] Amplitude of rudder moment

kb, kc Derivatives of the aerodynamic
wing force with respect to the
rotation amplitudes B and C;
Equations (14) and (31)

mb, me Derivatives of the wing moment
with respect to the rotational
amplitudes B and C; Equations
(15) and (32)

rb, rc Derivatives of the rudder aero-
dynamic force with respect to the
rotational amplitudes B and C;
Equations (19) and (33)

nb, nc Derivatives of the rudder moment /7
with respect to the rotational
amplitudes B and C; Equations
(20) and (34)

c a(Y) Amplitude of the local coefficient
of the wing lift; Equation (44)

cm(y) Amplitude of local coefficient of
wing moment; Equation- (:45) -

p(x, z, t) [kg m-s - 21]  Local pressure in the profile
plane

vi



a* Coefficients of the-,pressurer distribution'law; Equation C50)

hr(C) Normal distribution, Equation 042)

d P Coefficients; Equations (47) and
rn (48)

vii



EXPERIMENTAL TESTING OF UNSTEADY THREE-DIMENSIONAL LIFTING

SURFACE THEORIES FOR INCOMPRESSIBLE FLOW*

Horst Hertrich

1i. Introduction

Over the last few years, the treatment of the unsteady /7

lifting surface theory has made significant advances. In

particular, the calculation of the aerodynamic forces over

rigid oscillating lifting surfaces of finite span has been

significantly improved. The preliminary work for this was

already done in 1940 with the basic paper of H. G. Kuessner [91

on the integral equation of the harmonically oscillating lifting

surface for compressible subsonic flow. Later on, C. E. Watkins,

H. L. Runyan, and D. S. Woolston [I] numerically solved the

kernel function of this integral equation. Based on this, a

number of colocation methods were developed for calculating the

unsteady aerodynamic forces [2, 3, 4], etc. Other lifting

surface methods use a small box method, in which the lifting

surface is covered with a network of small boxes [5, 6].

In the older lifting line methods, the vortices are /8

concentrated along a line. The lifting line method is limited

to aspect ratios A > 3. Lifting surface methods, on the other

hand, can also be used for lifting surfaces with small aspect

*Communications from the Max Planck Institute. for Fluid
Dynamics and the Aerodynamic Test Facility. W. Tollmein and
H. SChlichting, editors.



ratios because of their vortex distribution over the area. Up

to the present time, it has not been possible to establish

lifting surface methods for the subsonic range which would lead

to satisfactory results for wings in combination with rudders.

Here one must resort to lifting line methods or the strip theory,

which is essentially two-dimensional.

The experimental development has not stayed abreast of the

development in the theoretical area. Numerous investigations of

unsteady aerodynamic forces under plane and three-dimensional

flow conditions have been carried out, both for incompressible

as well as for compressible conditions. However, with only a

few exceptions, these are global measurements .which do not give

any information about the distribution of the forces. The experi-

mental verification of unsteady aerodynamic forcethe'ries,, ,

using only global measurements is unsatisfactory. Only an inves-

tigation of the unsteady pressure distribution will provide

enough information to determine whether a theory can be used.

Pressure distribution measurements were carried out only

rarely because even the measurement 'of global unsteady aero-

dynamic forces was connected with considerable difficulties,

both for planning the experiment and for making measurements.

This is especially true for wind tunnel measurements with wings

with oscillating rudders, which up to the present time have only

been carried out at the NLR* in Amsterdam. Critical comparisons

of various aerodynamic force theories using measured three-

dimensional pressure distributions have been published to only

a very limited extent.

*NLR = Nationaal Lucht- en Ruimtevaartlaboratorium,
Amsterdam (National Aerodynamics and Space Laboratory).
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2. Experiment Principle

The first measurements of unsteady pressures over a wing

with an oscillating rudder were carried out by H. Drescher [16]

in 1937 using a small water tunnel of the AVA. The results of /9

the investigations, which were carried out over several years,

were later on partially published in the form of a dissertation

[17]. In the middle of the Fifties, such measurements were

again resumed almost at the same time in England and the USA

[18, 19]. After this, this was also again resumed at the NLR

in Amsterdam [20] and at the ONERA* in France [21].

The measurements performed up to the present can be divided

into two groups, depending on the measurement methods used. The

first .measurement method consists of assigning a pressure trans-

ducer installed in the model with each measurement point. The

pressure transducer is placed as close as possible to the pres-

sure tap [18, 19, 22]. In the second measurement method, the

pressure taps are connected through lines to a central measure-

ment unit outside of the model [16, 23, 24].

The first method was especially appropriate for investiga-

tions with two-dimensional flow, because then only one wing

section is measured and, therefore, 10 to 12 pressure difference

transducers are sufficient to obtain the distribution of the

pressure difference between the top.:side and the bottom side.

It is assumed that the models are so thin that only short con-

nection lines between the pressure transducers and the pressure

taps are required. This assumption no longer holds for large

models, so that it is necessary to use absolute pressure

transducers, which at the same time doubles the number of

*ONERA = Office National det'tudes et de Recherches
A6rospatiales, Paris (National Aerospace Study and Research
Office).
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pressure transducers [20]. One disadvantage of thin models is

the fact that no measurement values are obtained from the imme-

diate vicinity of the model edges because of the considerable

thickness of the pressure transducers. Especially in compres"

sible flow, it is only possible to investigate very small models,

so that the very small pressure transducers must be used. For

this reason, pressure transducers are used at the ONERA which

were developed from medical pressure probes for measuring the

blood pressure in the heart chamber [25].

In the case of measurements of wings of finite span, usually

one was restricted to a few wing sections; for example, in [181,

measurements were made in three steps at 50, 86, and 96% of wing /10

span, where there were nine measurement points each. Pressure

transducers are expensive and their calibration complicates the

experiment.-

Using the second measurement method, it is possible to

interrogate almost an unlimited number of measurement stations

using one pressure measurement capsule, assuming that a suitable

switching unit is available which connects the tube line coming

from each measurement point to the measurement capsule. Plastic

hoses or metal tubes can be used as pressure lines. If the

inner diameters are between 1 and 1.5 mm, the external diameter

of the small metal tubes does not have to be greater than 2 mm.

These small dimensions make it possible to carry out measurements

with very small wing parts, for example, in the vicinity of a

sharp trailing edge. However, a centrally located pressure

measurement capsule does not display the oscillating pressure

which occurs on the model, but instead a pressure which is

changed in amplitude and phase because of the conduction

resistance. This means that the dynamic behavior of the lines



must be known in order to be able to determine the pressures

which actually occurred on the model. In other words, the lines

must be calibrated. This can be done by pressing a pressure

connection equipped with a second pressure measurement capsule

onto the pressure measurement tap. Then the pressures of the

desired frequency are transmitted to the individual lines of the

model [241]. By comparing the values measured by the two pressure

measurement capsules, it is then possible to determine the

behavior of the line for various frequencies and pressure condi-

tions. It has been found that the calibration factor of the

line depends to a lesser extent on the pressure amplitudes than

on the frequenciesiand on the static pressure in the line. The

resistance increases for decreasing static pressure, In addition,

each line system has an upper limiting frequency beyond which.

signal transmission can no longer occur. Therefore, in the case

of measurements under compressible flow conditions, it is

necessary to select lines with especially favorable resistance

characteristics. High oscillation frequencies are also required

in this velocity range in order to achieve high reduced frequen-

cies. Therefore, it is necessary to carry out preliminary .

experiments using special calibration devices, or to determine

the dynamic behavior of the planned line systems by calculations

[26, 27].

In the case of measurements in incompressible flow, the /1

calibration procedure for the pressure lines can be considerably

simplified. One can use the fact that the differences in static

pressures in the various lines are too small to influence the

dynamic behavior. This means that only one line has to be cal-

ibrated if it can be assumed that the dynamic behavior of all

of the lines is identical. In order to bring this about, all

tube lines are manufactured of the same components with the same

length and dimensions. If one wishes to have a second measurement

5



tap immediately adjacent to a certain measurement point and if

it is desired to connect the pressure measurement capsule

installed in the model to it, it is possible to measure the

resistance of this (referencel line by carrying out a comparison

measurement with the central-measurement capsule. We can then

arrive at a conclusion for all of the other lines. This

principle was first applied by H. Bergh [23] and has the advan-

tage that the calibration takes only a few seconds and no

complicated devices are necessary. This very simple. procedure

can only be used in the low subsonic range, because the condition

of small static pressure differences in the lines will only be

satisfied under this condition. At higher velocities, it is

necessary to investigate the steady'pressure distribution over

the model and to introduce it as an additional correction factor.

In the case of measurements in incompressible flow, the

procedure described has the advantage of a relatively simple'

experiment, as well as the advantage that the evaluation of the

experiment is greatly simplified. This is because only a single

complex correction factor must be considered. Therefore, we

selected this principle for the extensive experimental program

carried out at the AVA [28].

3. Test Stand

During the development of the test stand, we consider the

fact that we wished to carry out not only wind tunnel measure-

ments, but also measurements in the laboratory outside of the

wind tunnel. The laboratory measurements were required for /12

testing the complicated measurement technology and for deter-

mining the pressure distributions in the case of oscillations

in quiet air. The test stand,':therefore, had to be easily

transportable.

6



One important aspect for the wind tunnel measurements was

the investigation of the influence of the wing aspect ratio on

the unsteady aerodynamic forces. Since the manufacturing of

several models withvarious aspect ratios would have been too

time consuming and costly, it was natural to use the half-model

technology customarily used in aerodynamics. In this method, the

model is clamped at the channel wall on one side. In addition,

we were able to change the penetration of the model into the

wind stream.

In order to be able to clamp the model on one side in the

free test section of the 3 m wind tunnel, we built a very heavy

wooden frame with. an installed clamping device with. a torsion

spring. The torsion spring consists of eight parallel spring

rods arranged in a regular octagon. The clamping length could

be adjusted continuously [28].

The test stand has wheels.and its height can be adjusted

with four spindles. During the wind tunnel experiments, it was

supported on an elevating platform and was shielded against the

wind current by means of a platewhich extended from the lower

edge of the exit nozzle up to the lower edge of the capture

funnel-(Figures 1 and 2). The plate is used as a plane of

symmetry, and one should imagine the model to undergo reflection

by this plane.

An electrodynamic exciter was located on-this wooden frame

which was connected to the model track or at the rudder through

a rod, which made the model perform rotational Toscillations.

In the case of rudder rotational oscillations, an air-filled

rubber hose served as a restoring spring. The hose was located

on the top side of the plate in a cavity of the fuselage-like

body, and at the same time, served as a hermetic seal between

the.model and the plate.

7
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Nozzle

Ground plate
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Elevating platform 1 Elevating platform

Scanvalve Nozzle

Capture funnel

Figure 1. Test stand in the test section Figure 2. Configuration of test
of the 3 m wind tunnel. stand between the support for the

wind tunnel plate.



The thin profile rods were attached to two wooden blocks /15

outside of the wind flow (Figure 1). The profile rods were used

to support the model along the axis of rotation.

4. Models

A rectangular wing and a sweptback wing with a sweepback of

25' was investigated as shown in Figures 3 and 4. Except for the

sweepback, these models have the same dimensions as shown in

Figures 5 and 6. Both have the NACA 0012 profile. Later on,

they were fitted with a full-length rudder amounting to 30% of

the wing chord Z = 0.6 m. The elevation adjustment of the test

stand was selected for both models so that aspect ratios of A =

3.1 and 2.5 resulted for the half-spans s = 0.94 and 0.74 m and

for semiwing areas of F/2 = 0.564 and 0.444 m 2 .

The models each consist of two halves and were manufactured

from glass fiber reinforced polyester resin. A negative mold

was made of plaster in which the external skin resin was cast

while inserting glass fiber mats. After the outer skin had

become rigid, the longitudinal and transverse ribs were glued

in, as shown in Figure 7. There are 140 pressure taps in the

same configuration in both halves. A 40 mm long brass tube with

an internal diameter of 1.6 mm was glued into the holes, which

was connected to a 2 m long PVC hose. All of the lines had to

be made of similar materials in order to achieve identical

dynamic resistance behavior. The hoses were led out along the
lower side of the models and connected to six switching devices

(scanivalves), Figure 8. The external pressure measurement

capsule is switched behind the scanivalves.

9
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Figure 3. Rectangular wing with Figure 4. Sweptback wing with pressure
pressure measurement locations. measurement points.



Figure 5. Rectangular wing and Figure 6. Sweptback wing in
rudder in test section. test section.



Figure 7. One-half of rectangular Figure 8. Stepping switch with hose
wing with installed pressure connections, external pressure
measurement capsule, measurement capsule, and cathode

followers.



The internal pressure measurement capsule is located

inside the model which is used for calibrating the reference

line (Figure 7). In addition, there are six acceleration

transducers in the model with which it is possible to check the /21

oscillation shape. Figure 8 shows the cathode follower switched

behind the acceleration transducers.

Both model halves are connected in many places by numerous

pass pins and screws and are attached along the lower side to

a metal track. The torsion spring is clamped to this track.

We measured rotational oscillations around three different

rotation axes for the rectangular wing. We used two rotation

axes for the sweptback wing. In addition, we have the rudder

rotational oscillations around the rudder leading edge for

both models, as well as simultaneous fiitiand:rudder rotational

oscillations for the rectangular wing. In this way, we were able

to investigate eight half wings with a total of 16 different

oscillation states using only two models, as shown.in Figures

9a and b.

5. Electronic Measurement Techniques

The following quantities were measured:

1. pressure distribution over the model by the external

pressure measurement capsule using 280 lines;

2. pressure at the control tap by the pressure measurement

capsule installed in the wing;

3. amplitudes of the model of six installed accelerometer

transducers; and

13
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.4. amplitude at the model track or at the rudder by the

electrodynamic velocity transducer with respect to the founda-

tion.

Since about 300 measurement variables are obtained for each

pressure distribution measurement (150 measurement values

decomposed into real and imaginary parts), the measurement

sequence was automated. The switching for this was performed

by a control unit. The control unit directs the signals of the

measurement transducers through a switch to the recording part

of the apparatus; first these are directed to the vector compon- /24

ent measurement device. This device performs a harmonic analysis

by determining the coefficients

27r

a 1 J (t) cosut d(t)

2 7. Cl

b - f(t) sin t d(ut)

of harmonic analysis of the signal f(t). In the theory of

harmonic oscillations, one usually considers the coefficients

al and bl as real and imaginary parts of the complex amplitude.

The conversion into digital quantities is done by means of an

integrating digital voltmeter to which is connected a printer

through a code converter. The printer prints out the real part

and the imaginary part in sequence. At the same time, the

digital variables are transferred to punched cards using a punch.

In order to eliminate disturbances caused by turbulence and

slower fluctuations in the wind velocity as much as possible,
the measurement time or integration t:me was extended to six

seconds for eachc:component.

15



The switching process of the control unit is triggered by

an end of print pulse of the printer, which transmits the signal

after each measurement of the imaginary part. The control unit

then either switches to another measurement instrument or switches

the scanivalves. The position of the six scanivalves can be

controlled through lamps at the control unit. Since the printer

has a counter, it is also possible to determine at any time by

how much the measurement process has advanced within the recording

process.

The accelerometer transducers operate according to the

piezo electric principle. Their signals are amplified, inte-

grated twice, and then connected to the recording part by the

control unit.

An additional amplitude measurement is done by a velocity /25

recorder, which has a pickoff on a boom on the model track.

This recorder produces the required two reference voltages for

the vector component measurement device and uses a four compon-

ent filter.

The measurement sequence is the following:

The characteristic data of a measurement sequence, the

amplitude, and the oscillation frequency, are input manually

to the printer. Then the control unit is turned on which. takes

over the entire measurement sequence. The following sequence

of measured valuer:transducers is maintained: acceleration

transducer, installed pressure measurement capsule, and central

pressure measurement capsule (140 times at A = 3.1; 120 times

at A = 2.5). At the conclusion of the measurement series, the

path amplitudes and the installed pressure measurement capsule

are controlled.

16



The circuit of the measurement apparatus is shown in

Figure 10. The structure of the device is shown in Figure 11.

The development of the apparatus is discussed in detail in

[33], especially the control unit.

6. Theories Used in the Comparison

6.1. Preliminary Remarks

The measurements in the 3 m wind tunnel of the AVA were

carried out with the purpose of comparing the results with those

of linearized theory of oscillating lifting surfaces with

several simplifying assumptions. The term ".lifting surface"

means that the influence of profile thickness is ignored

(infinitesimally thin profile).

The first of these assumptions is the assumption of an

incompressible liquid. Since the measurements are carried out

atIMach numbers Ma S 0.15, and since the relative density

changes due to the compressibility influence are Ap/p Ma 2/2;

this simplification is justified.

One important condition for the theoretical solutions in /28

the subsonic range are the so-called edge conditions at the

edges of the lifting surface: integrability of the pressure

at the edges and fixing of the geometric location of the downwind

on the lifting surface. Using this latter condition, the influ-

ence of the friction boundary layer is considered phenomenolo--

gically. Usually, according to Kutta, it is assumed that

(smooth) departure occurs at thetrailing edge., and this1assump-

tion is also used in the following. However, it is not the only

possible assumption. One can assume an oscillating separation

point and, in this way, avoid the deviations between the theory

17



,1 . . 7..A

31 Q-

Figure 10. Switching of measurement apparatus.

1- control unit; 2- test and switch line; 3- external pressure
measurement capsule; 4- topside: 140 pressure taps; 5- lower
side: 140 pressure taps; 6- refercnce line; 7- internal
pressure measurement capsule; 8- 6 accelerometer transducers;
9- 6 cathode followers; 10- strain gauges; 11- switch; 12-
electrodynamic exciter; 13- velocity transducer; 14- power
amplifier; 15- carrier frequency measurement amplifier; 16-
integrationamplifier; 17- control amplifier; 18- frequency
counter; 19- frequency generator; 20- amplitude display; 21-
test and switching line; 224, measurement variable switch; 23-
oscillograph; 24- vector component voltmeter; 25- reference
voltages; 26- four-phase filter; 27- outputs; 28- imaginary;
29- two separation amplifiers; 30- switch; 31- switch command;
32- measurement command;l 33- integrating digital voltmeter;
34- code converter for printer and punch; 35- recording command;
36- punched card punch; 37- punching pulse; 38- digital printer;,
39- print pulse.
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Figure 11. Arrangement of measurement instruments.

and the measurements. In the following, we will not make use

of this interesting possibility. It will be considered in future

investigations.

For very large wing aspect ratios and (or) very fast

oscillations, the flow processes over a wing section in the

flow direction depend only slightly on those of an adjacent

section, if the adjacent wing sections oscillate with about the

same amplitude. One can then approximately assume an independent

two-dimensional flow in each wing section. This is a so-called

strip theory, which was widely used for flutter calculations in

aircraft wings. In the following, we will also consider it as

a comparison.
19



Since large electronic computers can be used, it is

possible to calculate sufficiently accurate approximate

solutions of the integral equation of the general (three-

dimensional) unsteady lifting surface theory.( see Section 6.3).

Such solutions may be considered for wings of small to average

aspect ratios and they will also be used in comparisons with

measurements in the following,

For lifting surfaces with large aspect ratios, the double

integral calculation of the general lifting surface theory can )

be approximately reduced to a simple integral equation and,

therefore, to a lifting line method.(see Section 6.4). In the

final result, only the vortex drag function T must be replaced /29

in the strip theory mentioned above by a function which depends

on the coordinate y and the oscillation shape of the wing. This

theory is also used as a comparison.

6.2. Two-Dimensional Theory

6.2.1. Integral representation of pressure

The two-dimensional theory has been discussed in many

magazines and textbooks. We should especially like to mention

the basic work of H. G. Kuessner and L. Schwarz 17] and the

table monograph of H. G. Kuessner and H. Goellnitz [141].

The two-dimensional theory has led to good results for the

large aspect ratio wing. Since we investigated wings with small

side ratios (A = 3.1 and 2.5) in our measurements, we should

expect considerable deviations. Nevertheless, the two-

dimensional theory is of interest because it makes clear what

improvements must be made to the large aspect ratio theory to

be discussed below.
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Z

Figure 12. Deflection of segment profile,

We will use the coordinate system according to the

aerodynamic standard 9300 (Figure 12). The positive x axis

points in the direction of flight, that is, against the incident

flow direction,\and the positive z axis points downwards.*

We will first consider a segment profile with the half

chord c. We will introduce elliptical coordinates according to:

x c coshu cosO O u u 1 c ,2

z = csinhu sin 0 ; - C 0 4

We have u = 0 along the segment profile. Along the leading /31

edge, 6 = 0 holds and we have 6 = fr at the trailing edge. In

addition, we assume that the reduced frequency is

" (_3)

We assume that the segment profile carries out the oscillation

motion C(x, t) and that u = 0, and that the downwind is

*In [9], the x axis is the reverse of this.
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w(x, 0, t) = - V t) V- -W(V ) QVw() exp wt

and that there is the pressure jump

Ap = tim p(x,z,t) -. li p(x,z,t) = o V' (O) exp wt (5)
z-+0 z--0

The pressure jump defined in Equation (5) is, therefore, the

normal force per area unit, which the oscillating lifting surface

exercises on the liquid in the positive z direction. This

definition is appropriate in aeroelasticity and is usually used.

Using the variables used above, according to H. G. Kuessner

[8, 131, we obtain, the following integral representation for

the reduced pressure jump H at the lifting surface u = 0, which.

satisfies the Kutta condition:

(e) - W(O') sin6, dO' (, _ 1 8 C(0, 9' )

0 sin 1O ae)

+ GO,(0o 0 0) [G(0o. r, g) T(u*) - Ge(O. 0.0O')]

where

f exp(- t* coshu) G (u, ' 0) du

T(w*):
(7

I exp(- * coshu) Go Of(u, 0,0) du
(0)

For incompressible flow, the Green function becomes

G(u, ,9') =- n Coshu - os(+ ,) (8)

coshu - cos(O - 9)
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and the vortex entrainment function

K (u*) - K (1*)0 1T(w*) = (_9 _
Ko (u*) + K (*)

K0 , K1 are modified Hankel cylinder functions.

The reduced pressure jump H is found from the integral

equation (6!),and from Equation 39), it is seen to be constant

everywhere for constant and positive downwind.

6.2.2. Wing rotation

For wing rotational oscillations around an arbitrary

rotation axis which is specified by xd = cc, from Equations

(4) through (8) and with

(xt 1(EC9 - x) expt (9a)

we obtain the following pressure distribution in the chord

direction:

Ap(o), B) = 2 3 Tb(9) exp at

S v2  (1 +T( ))(1 +(y)) tg (10)
2 (y)) 2 .10)

+(2 0 2 E(y) +.4a*) sino - * sing cos.0Jexp t .

In Equation (10), ECy) is the distance of the rotation axis from /33

the wing center,

X (Y)Xd - 11)23
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By integrating Equation (10) over the entire wing chord, we

obtain the following for the aerodynamic force amplitude along

the strip of width dy

dL =.yV dyc d kb rk (_12)

and the following for the moment around the front neutral axis

dM ='V2 cdy B - mb . (13)

the theoretical derivatives are

k - (1 + T( I*)) (1 + 0 ()) + * + (y) (14)
2. + w (y)) " * + 2 E(y) 14)

and

" "2 1 2
mb = * + 15 )

For a rudder with the rudder leading edge

x ( y) XO(Y)16)
cosy =6)

from Equation (10) if we integrate from the limit cto Tw, we

find the rudder aerodynamic force caused by wing rotation acting

on the strip of width dy

dR = V2 c dy B rr b
. ..C17)

and the rudder moment around the rudder leading edge

d N V 2 c2 dyf B ( l8)

with the derivatives /34

7 rb ( +T(u*)) (1 + 4 W (y)) 3+ w 32

+ (y) *2( - + 1 sin 29 + ' (19)
2 3 (y)
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and

7r n (1+ T(w*)) (1 + + v* (y)) + " ] ;

- * 2  (r -~ ( + c(y) cos p) + E(y) sinqp(cos 2p + sin2 ) (12 0O

+ sin~i cosr (- sin2 p +

The auxiliary functions n(1 are shown in the appendix.

6.2.3. Rudder rotation

From Equations (4) to (8) in the case of rudder rotational

oscillations ardund the rudder leading edge and with

0" 0 w h e n  x x  (
(x, t) = CR (x - x) exp t with R (whe2 0Xal

S3hen x X R

'we find the pressure distribution

Ap(9 C) v C T() e cpwt

1 2

c3 c4 c

the H are abbreviationscn

e 1 .ctgr (12 2)

72 4 2ctg0

(.23)

" = - 2sinp ctg-+tn -r .4)S2 1 -os(-~) [2
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SC4 3 ctgj+4(n -tp) sing

1 - cos(9+ p) (25)
+ 2(cos - cos ) in I - cos(Q-4 )

=c -
[(v -p) 2cos + sin]J sin 0 - (r -p) sin0 cos9

2 1 - cos(+0 ip) 26
S(cost - cos 0) In

2 1 - cos(- p )

When we integrate Equation C21) over the entire wing chord, we

find the force amplitude acting on the strip of width dy

2
dL = V c dy C k C (2 7)

and the following expression for the amplitude of the moment

around the neutral axis

22
dM Y V c dyC rmc (-28)

When we integrate over the rudder chord, we obtain the rudder

aerodynamic force

dR V c dy C r: : (2 9)

and the rudder moment around the rudder leading edge

dN V 2 c2 dy C. n (30)

The derivatives are

. .2.1/36

ik c (1 + T(u*)) (1 + 2 + 3 + 4 31)

"mc = 5 + 12 a* 4 6 + * (32),
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r rc = (1 + T(*)) ( .+ * 2) 31+ 35

+ us a 2 37

S= (1 + T(w*))2 8 0 1 2

6.2.4. Simultaneous fin and rudder rotation

In the case of simultaneous fin and rudder rotational

oscillations, usually there is a phase displacement between the

two oscillation shapes. Since the resulting pressure distribu-

tion can be referred to the motion of the fin, we must write:

Ap(0, B,C) = V 2 [3 b(0) exp tt + C Te(0) exp (wt + (_35)

In Equation C35), 6 is the phase angle between the two oscillation

shapes. For the special case 6 = n, we find

Ap t(oB,Cn ) - 9 [Tb (a) - c () e xp Wt . (36

6.3. Three-Dimensional Lifting Surface Theory /37

6.3.1. General integral equation

The general integral equation of the' first kind for an

oscillating lifting surface in a subsonic range was given by H. G.

Kuessner [9] and also see [13]. Here we will restrict ourselves

to a plane lifting surface in an incompressible flow. According

to Equation (4), we assume that

w(x,y0. t) = VW(x.y) exp utj (37)
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is the given downwind on the lifting surface. According to

Equation (5),

Ap = im p(x, y, z, t) - lim p(x.y, z, t) = V 2 ( x , ) exp ut
z-+0 z-- (38)

is the pressure jump over the lifting surface and w is the

complex oscillation frequency. The physical meaning of this

pressure jump was already discussed above. Then the integral

equation of downwind at the lifting surface z = 0 is

s Xv(y')
W(x y) = - j I dx' dy'T(x',y') exp (x-x)

- s xh(y')

UU3-J f d exp(VlIy-y'y'It) + 39)

(XI'- ) Cp( -ly-yll r)

(y-y,)2 V(x'-x)2 +(y-y )2

Here we have

XI., - X .
0 ly- y- (40)

The integration over y' is divergent at the point y' = y and /38

must, therefore, be done in a special way, which has been

developed by C. E. Watkins, H. L. Runyan, and D. S. Woolston [1],

and others.

6.3.2. Solution methods

Based on [1], B. Laschka [3] selected a solution method

which was already used by E. Truckenbrodt [35] and H. Multhopp

[36] for calculating steady aerodynamic force distributions.

The solution method uses the Glauert trial solution
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T(x~y) ; j *(Y) h r)

with the normal distribution

T (1 - 2) + (1- 2X) 4 2

(I V +i -2)X

Here the functions T (1 - 2X) are the Tchebyscheff polynomials

of the first kind with the argument 1 - 2X with the three-

dimensional coordinate

x(y)-x

x. ( . . - - 3 )

We have the following relationship which involves the complex

coefficients a* and the complex lift and moment coefficients:r
x

/39

X
2 {V

Cm(Y) 2 (x, y) (Xm -x) dx

Xh (45)

S(4Xm - 1) a(y) + a*(y)J

The moment derivative refers to the Xm axis

x(y) - X(y) 46)
m (46)

The trial solution for f(x, y) must be introduced in Equation
(39). The difficulty now consists of presenting the kernel

function in such a way that a numerical solution method can be

used. We cannot discuss the details of the method discussed in

[3]. We will only give the results here, which produce/ two
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complex equation systems for the symmetric and antisymmetric

oscillation shapes.

For the symmetric oscillation shapes, the downwind at the

lifting surface is expanded as follows:

m+1 m+1
= 1, 2, ... ,

W(x ,y ) rn (47 )
r 0 n=1 p = 0. 1, 1... R

and for the antisymmetric oscillation shape, it is expanded in

m+1 m+1,S=1, 2,...,

Wxp.Y r n (.48
r=0 n=l1 p = 0, 1,... R

The downwind or the amplitudes are to be taken at the discrete

point n and

/40

SX.. p . 1.. R C49)

where n = y/s. The a and arn, respectively, are the desiredrn rn

coefficients in the expansion equations (47) (-48) at the discrete

point n = nn:

Sa = a*( L50)
rn .... 1) (5D)

The coefficients dVP consist of universal quadrature constantsrn

and of influence functions, see [3]. The quadrature constants

are tabulated. The influence 'fuctions must be calculated for

each wing shape and reduced frequency. In the calculation, we

select three points in the chord direction and ten stations in

the span direction [40].
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6.4. Theory of the Large Aspect Ratio Oscillating Lifting

Surface

6.4.1. Integral equation of the large &spect. ratio

lifting surface

The integral equation for the theory of the large aspect

ratio oscillating lifting surface was established by H. G.

Kuessner [9], see also [10 - 13]. In the case of large aspect

ratio lifting surfaces, the parameter given in Equation (40)

0 ly -y1 (151).

is usually << 1 at most points of the lifting surface. Therefore,
we may approximately set

t o. /41
(52)

In this case, the lower limit in the integral equation (39)

becomes zero'.and the second term in the bracket drops out.

Assuming the characteristic function

K(y) B(x,y) exp- ) dx (53
Xh(y)

and the special downwind distribution

W(x, Y. o, t) V W1(y) exp w(t+ ) (514)

we then find the following simplified integral equation for the

characteristic function from Equation (39) by using partial

integration

S

l y) .0-4 ;W (Y) -MWY-)+ St l ,Y-j)I! ' dyf 35 5
SK (y) dy yy '(

-s
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Here Ke is the characteristic function in the two-dimensional

flow. The function S is defined and tabulated in [9, 12, and 15].

For w = 0, we have K(y) = rCy) (-circulation) and S = i. Equation

(55) then becomes the integral equatiorn of the so-called Prandtl

lifting line theory, which is also a lifting surface theory.

Incnorder to be able to treat arbitrary downwind distribu-

tions using Equation C551 and not only those having the form

(54), another approximation is required. From the given downwind

1,lwe will subtract the downwind wl according to Equation (54,1,

which has just the right magnitude so that the characteristic

functions for w and wl in two-dimensional flow coincide. The

pressure produced by wl is calculated according to Equation (55).

The pressure, which is produced by the downwind diffe'rence, is /42

calculated according to the two-dimensional theory.

As shown in [12], the approximation assumptions amount to

replacing only the function T(-*) by the modified vortex entrain-

ment function

K(y) I . ) + 1
T ((y y) =

r c W(Y) ) I(*)l W) I *) (156

in the two-dimensional solution [Equation C6)1.:mentioned above.,

10 and II are the modified Bessel functions.

6.4,2. Solution methods

The characteristic function in the case of two-dimensional

flow is

K (y) =  c f(w*) w(y) 2c.. .T(y) 57).
e w [K(w*) + K ) ]
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for

J(y, B) B (* E(y) + } + 1)J(YB . (58)

for wing rotational oscillations around an arbitrary rotation

axis and

J(y, C) (c))1(5 9_1

for rudder rotationraround the rudder leading edge.

In order to solve the integral equation (1551, it is useful

to use a harmonic trial solution. We set /43

y scos " "

C6 0)
N

j k
K(y) n k sin nW

n=1 (C61)

Then, the integral equation C55) finally becomes the algebraic

equation

N

Ke (s cosW) = knL sin nW+ f((*) sn(.4)s _62)

n=l

SnC (, Y) and f(_m*) are auxiliary functions. The functions
n

Sn have been calculated in [15]jfor n = 1 to 19: Q is the

reduced frequency referred to one-half of the span

S- (_63).

In order to determine the desired coefficients kn in Equation

(62), it is necessary to substitute N discrete values T = m so

that we find a system of N linearized, inhomogeneous, and complex
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equations for the coefficients kn . Nine points cos Tm aren m

selected for the calculation:

cos = 0; 0.3; 0,4; 0,5; 0 0 7: 0; 0,,; 0.: I 0;

For these stations, we calculate the modified function TI

with which it is then possible to determine the pressure distri-

bution at these sections, Since the model only has seven sections

with pressure taps, it would have been sufficient to carry out

the calculation for these seven sections. The determination of

the global forces becomes more accurate the more stations cos Ym
are used.

As already mentioned in Section 6.4.1, the solution for the /44

large aspect ratio theory differs from the two-dimensional

theory only because the functions T(*) of the two-dimensional

solution must be replaced by the modified functions T1 (.W*, y)

according to Equation (56). With this substitution, we can,

therefore, apply the expression for the pressure distribution,

for the aerodynamic forces, and moments of Section 6.2 in the

theory of the oscillating large aspect ratio lifting surface.

The three theories mentioned were programmed for the IBM

7040 computer installation of the AVA. The author wishes to

thank Mr. H. Triebstein and Mr. K. Lohmann for the programming

work [40, 41].
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7. Measurement Results

7.1. Oscillations in Quiet Air

Figures 13 and 14 give an example of a pressure distribution

for oscillations in quiet air. These are rudder rotational

oscillations of the sweptback wing [32]. In addition to the

measured values, we also show the limiting case of the two-

dimensional theory for V = 0 and, therefore, for Iw* = j . From

Equation C21), we obtain the following for this limiting case

p0(9,C) l 2 c2 C[ 5l expa Ut C65)

where Hc5 is given by Equation (26).

The following complex pressure derivative for the rudder

rotational oscillations is defined at V = 0 for purposes of

plotting:

C O 2 (e (c6
cO "cO cO " , ,2 C exp "t: 6

In Equation (65), we have H" = 0, i.e., the oscillating air masscO I

is in phase with the motion, according to the theory.

In spite of the very low pressures Corder of one-tenth of

a millimeter of water column), the scatter in the measured value

is small. The requirement for identical dynamic resistance

behavior of the pressure lines is apparently satisfied for both /46

models. If we consider the fact that the plane theory cannot

consider the pressure equalization at the end of the wing, we

can see that the measured values have the same tendency as the

theoretical prediction. This is also true for the imaginary

part, because the measured values are close to zero, whereas
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Rudder- rot at ion axis-

jRudder rotation axis

- -----/

* I "

~ i~-~I;-------------u

IV

I ------------ V

0,25

r.

-0.25

o = C +i: for rudder rotational oscillations of the sweptback

wing: 'A 3.; v= 611z -0- measurement; - two-dimensional theory.
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they should be exactly equal to zero according to the theory.

Additional examples for the pressure distributions for oscil-

lations in quiet air are contained in [29 - 32].

7.2. Steady Flow

The boundary layer thickness along the wind tunnel plate is

first determined in preliminary experiments. The height of the

fuselage-like body which frames the model root Csee, for example,

Figure 6) is then selected so that it penetrates somewhat above

the maximum boundary layer thickness. Outside of the boundary

layer, the free jet had a great deal of turbulence and direction

fluctuations in the vicinity of the plate, so that flow separa-

tion occurred at the lowest section in the vicinity of the nose

of the model. Therefore, we did not consider the lowest section

when integrating the pressure distribution over the wing area.

In order to also obtain the derivatives for the limiting

case w* = 0, i.e., steady flow, we measured the pressure distri-

butions for various::.angles of attack a of the wings as well as

for various deflection angles 5 of the rudders for retracted fin

[37]. By integrating the steady pressure distributions over the

wing area, we were able to determine the lift and moment

coefficients and, therefore, their increases with angle of

attack a for the various configurations. The lift and moment

increases correspond to the real parts of the unsteady deriva-

tives for the limiting case w* = 0, for example

tim k =X k'
do B - B B 67

de

da WI -0
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In Equations C67Y and (67al, the quantities cA and cM are the /47

total lift and total moment coefficients of the wing. The global

aerodynamic force and moment derivatives for wing rotation, kB

and mB ~are formed as follows:

SS

k = kB + 1 k skbyMy .-" (68)
0

m +im mb(y) dy
13 13 +.b 'B / (68a)

In Equations (67) and (67a), only the real part of the derivatives

is contained, because the imaginary part must vanish for w* = 0

according to definition.

Figures 15 through 22 contain lift and moment coefficients

of the investigated wings-. The moments are referred to the

neutral axis. In addition to the measured values, we also show

the variations-,which are found from the three discussed unsteady

aerodynamic force theories for the limiting case of steady flow.

It can be seen that the lifting surface method, called the three--

dimensional theory in the figures, produces an exceptional

agreement for the lift coefficients, Figures 15 to 18. However,

the agreement is not as good for the moment coefficients, Figures

19 to 22. Here the measured values are considerably above those

of the theory. The deviation must be attributed to the influence

of the finite thickness, which was not considered by the theory.

The results presented here confirm earlier measurements of

N. Scholz with rectangular wings of various aspect ratios [43].

Similarly. large deviations can also be found in measurements

under plane flow conditions [44].
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A, 0 - - I 2 o

- 3 - 3

. _ _ _ -0,4 0, 24

Figures 15 and 16. Lift coefficient values of rectangular wing.

-0,4 - O,4

42

-6o  -4o 2o  20 o60  -60 o  -20 20 . 6

CA / CA

Figures 17 and 18. Lift coefficient values of sweptback wing.

o- measurement, profile NACA 0012; --- two-dimensional theory;
-- large aspect ratio theory; - three-dimensional theory.
Call theories - flat plate).
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S ,10 -- 0,01
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A = 1oA = 25

i.,402 -0,02

Figures 19 and 20. Moment coefficient values of rectangular wing.

44

C -M-- --- op

-402 -402

Figures 21 and 22. Moment coefficient values of sweptback wing.

o- measurement, pr6file NACA 0012; - three-dimensional theory,
flat plate.
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Tables la and b contain the numerical values of the increases

or the derivatives, respectively. :;,he;table contains the measured

values which have been corrected for the finite jet diameter of

the wind tunnel. The corrections are very small. The measured

values for rudder deflection are given in [37].

7.3. Oscillations in the Case of Incident Flow /51

7.3.1. Preliminary remark

The wind tunnel measurements with operating models were

carried out for the reduced frequencies I~*I = 0.13 to 0.76.

The variation of the reduced frequency was done by changing the

oscillation frequency v in the::range between 3 and a maximum of

18 Hz at a constant stagnation pressure q = 100 mm WS and,

therefore, constant Reynolds number Re z 1.6 ' 106. It was also

done by reducing the stagnation pressure for a constant oscil-

lation frequency v = 6 Hz. The lowest Reynolds number was

0.5 ' 106. The oscillation amplitudes of the wings amounted to

between 0.2 to 0.8 degrees. The rudder rotation oscillations

had amplitudes of up to 1.6 degrees.

Dimensionless pressure derivatives were selected for

plotting the unsteady pressure distributions, and for the

wing rotation according to Equation 10), we use

T = Tb , AP(G. B)
Vb 9v 2 Bexp ut

whereas for the rudder rotation, according to Equation (21), we
use

T = +iP' 
=  ap(9, C)

c c .: V2 C exp t (.70 )
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TABLE la. LIFT INCREASE de /da = 'kMiFOR WING AT ANGLE OF ATTACK.*\ A j

Corrected hree-dimensional arge aspect ratio Two-dimensional
Coring Measuremen theory (lifting theory ting tieorymeasurement surface theory) ine theory).

Kectahgular wing 'A= :, 1 , 1 ,23 3. 21 3, 70. t6, 28 27r

Rectangular wing 'A= 2; 5 82, 0 . 2, 93 ' 2, 85 . 3,40 6, 28
Sweptback wingl A 3, 3,0 3, 13 3, io . 3,67 6, 28

Sweptback wing. A= 2,5 2, 80 2,84 2,77 3, 35 6, 28

'TABLE lb. MOMENT INCREASE dc /da = rrm OF WING AT ANGLE OF ATTACK.*

Correctedi Three-dimensional Large aspect ratio Two-dimensional. -ing tMeasurement measurete theory (lifting theory (lifting Two-dimensional
measurement Isurface theory)i -line theory) theory

!Rectangular wing A= 3, 1 0, 209 0, 212 0, 086 0. .0

"Rectangular wing 1A= 2.5 230 0, 233 . 0, 094 . 0 0.

jSweptback wing A= 3,i 0,1i4 0,148 0,078 0 0

,Sweptback wing A= 2, 5 0, 10c 0, 162 0, 084 0 .

.Translator's Note: Commas in numbers indicate decimal :ointas.l

*[Translator's Note: Commas in numbers indicate decimal points.]



In the case of simultaneous fin and rudder rotation, two

amplitudes are involved. If the phase angle between the two

oscillation shapes is 6 = r, then according to Equation (36)
we find the following dimensionless and amplitude-dependent

pressure coefficient

AP1(0 B3, C)
P P + i P" -

x v ey )t 7 1.)

The measured local derivatives are found by integrating the

measured pressure distributions at the seven (for the aspect

ratio A = 3.1) or six (for A = 2.5) model sections (see Figures /52

3 and 4). The global derivatives are obtained by integrating the

pressure distribution over the entire wing and rudder area. In

order to distinguish the local derivatives, the global derivatives

have large letters as::subscripts, see Equation (68).

The local moment derivatives for wing pitch oscillations

are referred to the 1/4 line. The corresponding global deriva-

tives refer to the neutral axis, that i4,the axis through the

geometric neutral point (see Figure 4). The wing and rudder

moments are positive for a tail load.

We should like to remark, in conjunction::with the following

pressure distributions, that the measurement examples presented

represent a relatively small selection of the results contained

in [29 - 32]. A complete reproduction of them would go outside

the scope of this report.

7.3.2. Wing rotation

Figures 23 to 28 show the three measured pressure distribu-

tions for harmonic rotational oscillations of the rectangular

wing with a side ratio A = 3.1. The examples given are disting-

uished by the position of the rotation axis (see Figure 9a). The
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Rotation axis 3 "

10.0

I .V--
7.5

2,5

0 VUI

Rotation axis 3

it ----- I/ I

VI

2.5

-2.5

Figures 23 and 24. Pressure distribution Irb blb+iiT over

rectangular wing .for rotational oscillations around axis 3;
= 3,1; v= 8 Hz; IEI = 0364/ ; -o- measurement; ---- three-dimensional

theory.
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Figure 25 and 26. Pressure distribution 7, = 4 i-  over
rectangular wing for rotational oscillations around axis 1;
A 3, ;v 8 1z;:iJ=, 3641; -0- measurement; - three-dimensional
theory.
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Figures 27 and 28. Pressure distribution ;Wb wb+ilrb over
rectangular wing for rotational oscillations around axis 2;

jA= 3, 1;.~ =1i6.o6 HIIJw= o0,o7; -o- measurement; -- three-dimensional
theory.
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results of the lifting surface theory according to [3] are given

in addition to the measured values, and they are referred to as

the three-dimensional theory.

As already mentioned above, there was partial flow separa-

tion in the vicinity of the tunnel plate. This produces an

irregularity in the pressure variation of Section VII, especially

in the real part, see Figure 25 for example. In addition, the

pressure distribution is usually continuous. Only the pressure

distributions for rotational oscillations around axis 1 represent

an exception to this. Because this rotation axis is near the

wing leading edge, we find only small oscillation amplitudes

here, so that the tunnel turbulence appears more pronounced in

this case (Figures 25 and 26).

The comparison with the three-dimensional theory shows that /56

the measured real parts have a somewhat steeper variation than

according to theory. Especially in the outer wing segments, the

measured values deviate relatively strongly from the results of

the theory in the vicinity of the trailing edge, because here

negative measured values occur to an increasing extent because

of the three-dimensional flow around the profile (see Figures

23 and 25). Only at higher reduced frequencies can one find a

better agreement (Figure 27). In general, we can .evaluate the

agreement between the three-dimensional theory and the measure-

ment results to be a good one, and one reason for this is that

the deviations described above cancel to a certain extent when

we integrate over the wing chord. As far as the position of the

rotation axis is concerned, we find that extreme rotation axis

positions such as the axis 1 cannot be evaluated as favorably

as rotation axes in the central part of the wing (for example,

see Figures 23 and 25). Therefore, we should expect an improve-

ment in the theory for extreme rotation axis positions by intro-

ducing a large number of support points in the chord direction.
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The conclusions reached for the side ratio A = 3.1 also

apply for the side ratio A = 2.5, as discussed in [30-1.

In order to be able to compare the measured results with

the large aspect ratio theory and the two-dimensional theory,

two pressure distributions in the section IV of the rectangular

wing with A = 3.1 are plotted separately, see Figures 29, 30a and

b. It can be seen that, in the real part and as the reduced

frequency Iw*l decreases, the three-dimensional theory is

superior to the large aspect ratio theory (Figure 29). If there

is a large reduced frequency, the converse is true (Figure 30a).

No noticeable differences appear in the imaginary part as the

reduced frequency is decreased. For a large Iwm*, the three-

dimensional theory is clearly superior (Figure 30b). This

result can be considered to be typical for other sections as

well. However, one must consider the fact that the two-

dimensional theory will have considerably larger deviations in

sections close to the end of the wing, because it only applies

for plane flow. This clarifies the representation of the local

aerodynamic force derivatives in Figures 31 and 32. Since it is

a wing with a constant chord, the values of the two-dimensional /62

theory do not change over the span. The large aspect rat'io

theory, as well as the three-dimensional theory,/agree well with

the decrease of the measured values towards the end of the wing.

This is also true for the smaller aspect ratio A = 2.5, see

Figure 32.

Figures 33 to 36 show two pressure distributions for

rotational oscillations of the two sweptback wings A = 3.1 and

2.5, respectively. The two rotation axes are perpendicular to

the flow direction, see Figure 9b.
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Figure 29. Pressure distribution 'Trb =T+i T through section IV
of rectangular wing for rotational oscillation around axis 2;
A- 31; v 6,56 Hz; (Ic*lO 0,3i41; o- measurement; - three-dimensional
theory; -- large aspect ratio theory; --- two-dimensional theory.
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Figure 30b. Pressure distribution
b r +iWb in section IV of' rectangular

Figure_ 30a. Pressure distribution wing forrotational oscillations
= +i through section IV of around axis 2; imaginary part Lk

rectangular wing for rotational A = 301; v 16,06 Hz; I =* 0. 744
oscillation around axis 2; real o- measurement; - three-dimensional
part b A' A=3.1; = 16,06 z; w *I = O 744 theory; --- large aspect ratio.theory;
o- measurement; - three-amensional --- two-dimensional theory.

o theory; .- large aspect ratio theory;
--- two-dimensional theory.
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Figure 31. Aerodynamic force distribution in the span direction
over rectangular wing with rotational oscillations around axis
2; A = 3,1; v= 3 Hz; IwI.= 0,138\ ; O- measurement; - three-dimensional
theory; -*- large aspect ratio theory; --- two-dimensional theory.
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Figure 32. Aerodynamic force distribution in the span direction
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3large aspect ratio theory; --- two-dimensional theory.
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Figure 32. Aerodynamic force distribution in the span direction
over rectangular wing with rotational oscillations around axis 3;
gnA= 2, 5; v =10 -z; Iw i- 5 0 4  o-, measurement; - three-dimensional theory;
-"4 large aspect ratio theory; ... two-dimensional theory.

52



-Rotation axis

* *1.. .-- I

. I.

vVI

Rotation axis

* - - . -

-V1

Figures 33 and 34. Pressure distribution b over wept-
back wing for the rotational oscillations around trailing edge;
,A 3.1; v 14 Iz; 1Wi 0..62J ; -o- measurement; - three-dimensional
theory.
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Figures 35 and 36. Pressure distribution 'b rrTb + ivb over swept-
back wing for rotational oscillations around leading edge;
A= 2 5= v 8= Hz I o* =Cofal's; -o- measurement; - three-dimensional
theory.
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The disturbances at the nose of the model caused by tunnel

turbulence are more pronounced for the sweptback wing than for

the rectangular wing. Here again they appear more pronounced at

the lower oscillation frequencies than for the higher ones [31].

The agreement with the three-dimensional theory is about the

same as for the rectangular wing.

Figures 37 through 39 again show the pressure distributions

,of the individual sections in which again we show the values of

the large aspect ratio theory and the two-dimensional theory.

Considering the real part, it can be seen that the variation of

the three-dimensional theory is always below the one for the

other two theories. Here again we have no basic changes in the

span direction as Figures 38 and 39 show. On the other hand,

the imaginary parts do not show this uniform behavior. As

already found in Figure 36, if the rotation axis is in front,

there are clear changes in the theory in the span direction in

the region of the nose. Depending on whether the rotation axis

for the individual sections is selected inside the wing or ahead

of the leading edge, we find a decrease or increase in the

imaginary part according to the three-dimensional theory.

Figures 38 and 39 show how the imaginary parts according to the

two-dimensional theory and according to the large aspect ratio

theory differ. In the two-dimensional theory, there is also an

increase at the nose caused by the rotation axis in front of it,

but it only occurs for a large distance of the rotation axis

(Figure 39). The large aspect ratio theory has the opposite

characteristics, because here the imaginary part at the nose

decreases more strongly towards the end of the wing. This /68

behavior is not in agreement with the measured results. This

can be traced to the influence of the modified function Tl,

which makes itself very pronounced in the imaginary part, This

becomes clear in the representation of the theoretical pressure
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Figure 37. Pressure distribution ,. =Ib+ irb  Figure 38. Pressure distribution Trb.=-rb .+ ib
at section IV of sweptback wing for at section IV of sweptback wing for
rotational oscillations around trailing rotational oscillations around trailing
edge; = 3,l1;. v14 lHz;i l 0 622 ; o- measure- edge; A= 2,5z;v 8 Hz; I1 = 0,358 ; - measure-
ment; three-dimensional theory; -- ment; - three-dimensional theory; --
large aspect ratio theory; --- two-dimen-i large aspect ratio theory; --- two-
sional-theory. dimensional theory.



7-1

T 1\

bo

1 0 I -7

Figure 39. Pressure distribution 7b .. i at section II of
sweptback wing for rotational oscillations around trailing edge;

=A 2 ds; v = 8 v z;= I:= 0.358/ ; o- measurement; - three-dimensional
theory; --- large aspect ratio theory; --- two-dimensional theory.
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distribution in the span direction for the three theories,-.as

shown in Figures 40 and 41. In Figures 40 and 41, we show the

theoretical pressure variations over the semispan for a number

of stations in the chord direction. Since the two-dimensional

theory results in straight lines for all stations, only one

station is shown in the region of the leading edge and the trail-

ing edge. The real part shows a good basic agreement between

the three-dimensional theory and the large aspect ratio theory

(Figure 40). The imaginary part, on the other hand, shows the

deviations mentioned above CFigure 41).

Figures 42 and 43 show two aerodynamic force distributions

in the span direction.

Figures 44 to 53 show the global aerodynamic force and

moment derivatives for pitch oscillations of the rectangular

wings and of the sweptback wings around various rotation axes.

The representation of the aerodynamic force derivatives

shows that, by displacing the rotation axis from the leading

edge to the center of the wing, a flatter increase in the

imaginary part is produced. For all of the configurations, one

can see that there is a relatively good agreement between the

measured values and the three-dimensional theory. Here again

the large aspect ratio theory also shows good results. As

expected, the deviatioi of the two-dimensional theory are

especially large for the real part.

The moment derivatives are referred to the neutral axis.

For this reference axis, the large aspect ratio theory does not

introduce any change over the two-dimensional theory, because

then the T function is not contained in the formulas [see

Equations (15) and (32)]. There is quite good agreement between

58



1.5
8.03 ''-j 0.. .. . --- jr ., .. .

0.70
SRotat ion axis

Z .0.02 i ..i.- a i !7. .

0,25 0.50 075 yls0 0,50 0.75 yls 10

Figure L.0. Theoretical pressure variation Figure 41.. Thepretical pressure vari-
v -- i in span direction over sweptback ation r =T- +il in span direction over
wing rotational oscillations around sweptback wing for rotational oscillations

leading edge; real part r;. A= 2.5; Iw.V =0358 around leading edge; imaginary part
three-dimensional theory; --- large w'i A= 2.5; Iw*I= o358: ; - three-

aspect ratio theory; --- two-dimensional dmensional theory; -.- large aspect
theory;. ratio theory; --- two-dimensional theory.
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Figure 43. Aerodynamic force distribution in span direction
over sweptback wing for rotational oscillations around trailing
edge = 2, 5; v 10 iIz;1w-i =0o453 ; o- measurement; - three-
dimensional theory; -. large aspect ratio theory; --- two-
dimensional theory.

61



im

I . •re I

Wks

0
5-)

/I

1
2

re
7rm

q2 0.4 0.6 /wIo .8

Figure 44. Global forces and moments of the rectangular wing
for rotational oscillations around axis 1. n

o- rea-l part measurement at - three-dimensional- theory
A- imaginary partf Re O\ - -0 large aspect ratio theory

- two-dimensional theory
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Figure 45. Global forces and moments of the rectangular wing
for rotational oscillatiohs around axis 2.
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- greal part measGbrem Ient at - three-dimensional theory
A- imaginary partl Re = 1,'0 ]  ---- large aspect ratio theory

--- two-dimensional theory
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Figure 47. Global forces and moments of the rectangular wing
for rotational oscillations around axis 1.

o- real part ( measurement at - three-dimensional theory
A- imaginary part) n=e = f,6 1 I  -. large aspect ratio theory

--- two-dimensional theory
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Figure 48. Global forces and moments of the rectangular wing
for rotational oscillations around axis 2.

o- real time measurement at three-dimensional theory
A- imaginary time Re ,s.10 --6 large aspect ratio theory

--- two-dimensional theory.
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Figure 49. Global forces and moments of the rectangular wing
for rotational oscillations around axis 3.

o- real time ( measurement at - three-dimensional theory
A- imaginary timej Re=1,6-10/ -- large aspect ratio theory

--- two-dimensional theory

67



re

7rk B  ,

0

- I

-2

- 0,2 0,4 06 Iw* 0,8

Figure 50. Global forces and moments of sweptback wing for
rotational oscillations around leading edge.

o- real part measurement at - three-dimensional theory
A- imaginary part Re = 16. o6l -.- large aspect ratio theory
- real part measurement at --- two-dimensional theory
A- imaginary part Re , 45. o - o, 57."o"
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Figure 51. Global forces and moments of sweptback wing for
rotational oscillations around tralling.edge.

o- real part measureme.nt at -- three-dimensional t-heory
A- imaginary Re=1o 5 0 =1 coG- --- large aspect ratio theory
0- real part measurement at --- two-dimensional theory

A- imaginary part Re R= 1,45.106 _057106 t
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Figure 52. Global forces and moments of sweptback wing for
rotational oscillations around leading edge.

o- real part 'measurement at --- three-dimensional- theory-
A- imaginary part iRe= 165-106 =c nS -.- large aspect ratio theory
e- real part 'measurement alt --- two-dimensional theory
A- imaginary part Re = 1,45. 106 o057.1o6
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Figure 53. Global forces and moments of sweptback wing for
rotational oscillations around trailing edge.

o- real part measurement at -- three-dimensional theory
A.- imaginary part=Re.=1.65 1o- _Con _ large aspect ratio theory
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measured values and the three-dimensional theory for the moment

derivatives. It is somewhat better for the rectangular wings

than for the sweptback wings.

The representations of the globaliderivatives of the swept- /83

back wings also contain measured values obtained at various

Reynolds numbers. In these measurements, we did not vary the

oscillation frequency as before, but we brought about a change

in the reduced frequency by dropping the stagnation pressure at

a constant oscillation frequency of v = 6 Hz. Increasing reduced

frequencies, therefore, meansldecreasing Reynolds numbers. The

Reynolds number was reduced from Re = 1.65 ' 106 for Iw*( z 0.270

to Re = 0.57 , 106 for I*.l1 0.760. As Figures 50 through 53

show, we were not able to establish any noticeable influence of

the Reynolds number in this range, because all the measured /

values lie within a certain scatter range,

7.3.3. Rudder rotation

Figures 54 to 57 contain two pressure distributions of the

rectangular wings for rudder rotational oscillations around the

rudder leading edge. The fin is fixed and is not set at an angle.

The large aspect ratio-theory curves are plotted, in addition to

the measured values for this oscillation form. It was not

possible to use the colocation method for solving this lifting

surface theory, according to [3], because the three support

points in the chord direction are not sufficient to be able to

determine the singularity which occurs for rudder- oscillationhs ,

at the rudder slit (see also [38]).

The two-dimensional theory is also shown, in addition to the

large aspect ratio theory, for the section closest to the model

root, that is Section VII at A = 3.1 or Section VI at A = 2.5.
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The variation of the two-dimensional theory is identical for

all sections; this was also true for the sweptback wing discussed

below.

It can be seen that there is good agreement over a wide

range of the model area, especially at the large aspect ratio

A = 3.1 (Figures 54 and 56),Ibetween the measured values and the

large aspect ratio theory. The measured values are, as expected,

usually somewhat smaller than the theoretical values. Only over /86

the rudder is the measured real part increase steeper in the

vicinity of the rudder slit than predicted by theory, so that

here the measured values exceed even the large aspect ratio

theory and the two-dimensional theory (see, for example, section

iVi in Figure 54). The fact that the increase in the measured

real parts is not as steep over the fin can be attributed to the

formation of the rudder slit. Because the rudder slit was

produced by cutting open the resin skin of the model, a sharp

edge resulted, which. carries out only slight deflections corres-

ponding to the rudder oscillation amplitude. These deflections

of the rudder leading edge have the effect of a rudder step

oscillation. Apparently the pressure distribution over the

fin depends greatly on the nature of the rudder slit and on

the motion of the rudder leading edge. In the results presented,

the deflection of the rudder leading edge amounted to only a

few percent of the deflection of the rudder trailing edge.

The variation of the large aspect ratio theory in the span

direction has a decrease towards the nose in the vicinity of

the wing tip. This decrease occurs for both components, whereas

for wing rotation, we only found it in the imaginary part (see

above). This is a contradiction to the measured results, because

they take on a uniform variation over the fin. The reason for

the differing behavior of the theory can be attributed to the
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various approximations made. These approximations were made in

the large aspect ratio theory. The modification of the T func-

tion with respect to the pressure variation has an especially

large effect on the front half of the wing. It'does not have a

strong effect over the rudder. The pressure variation of the

large aspect ratio theory over the rudder is therefore hardly

changed at the wing tip, compared with the two-dimensional theory..

Csee Figures 58 and 59). This fact contradicts the measured

values, because the measured real parts over the rudder are

negative and increase towards the outside, which is produced

by the three-dimensional flow, just like for wing rotation Csee

Figures 54 and 56).

Figures 60 and 61 show aerodynamic force distributions of

the rectangular wings in the span direction. The measured values

are obtained by integrating the measured pressure distributions /91

over the entire wing chord at the individual measurement sections.

For the aspect ratio A = 3.1, we have approximate agreement with

*he large aspect ratio theory. The fact that this theory gives

a good representation of the pressure equalization over the wing

is a result of the decrease in the theoretical variation at the

nose discussed above. As to be expected, large deviations already

occur for the aspect ratio A = 2.5 (Figure 61).

Figures 62 and 63 show :aerodynamic force distributions of

the rudder in the span direction. The measured values are

obtained by integration over the pressure distribution measured

over the rudder at the individual sections. It can be seen

that,even for the large aspect ratio A = 3.1, there are consid-

erable deviations between the measured values and the two theories

(Figure 62). Here the large aspect ratio theory gives only a

slight improvement compared to the two-dimensional theory. The

reason for this is that the terms independent of the T function

in the expressions for the.:.rudder derivatives increase [see (33)].
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Figure 58. Theoretical pressure Figure 59.. Theoretical pressure
variation iWi = 1 +inT in span direction variation _r = it +irT in span direction
over rectanugtiar wing for rudder over rectangular wing for rudder
rotational oscillations. Real part rotational oscillations. Imaginary
u; A= 3,1; lwI = 0,269 ;- large aspect part ; A = 3,1; 1w1= 0,269 large
raT-neoroy; . two-dimensional aspect--at o neory;-- two-dimensional
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Figure 60. Distribution of wing aerodynamic force over wve.i
rectangular wing for rudder rotational oscillations

3,;.=6 Hz; .w .-0.349, o- measurement; -- large aspect ratio
theory; --- two-dimensional theory.
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Figure 61. Distribution of wing aerodynamic force over
rectangular wing for rudder rotational oscillations;

= 2, 5 = 10 Hz; I = 0,454 o- measurement; - large aspect ratio
theory; --- two-dimensional theory.
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Figure 62. Distribution of rudder aerodynamic force over
rectangular wing for rudder rotational oscillations
A= 3,; =6 Hz;IwI- 03491 ; o- measurement; - large aspect ratio
theory; two-dimensional theory.

Figures 64 to 67 show pressure distributions for rudder

rotational oscillations of the sweptback wings. The measurement

results do not deviate essentially from the results for the

rectangular wings. The same is true for the large aspect

ratio theory. Figures 66 and 67 show two pressure distributions

at the same reduced frequency Iw*j = 0.445 but for different

Reynolds numbers. For the real part, the measured values often

coincide, whereas there are slight deviations in the imaginary
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Figure 63. Distribution of rudder aerodynamic force over
rectangular wing for rudder rotational oscillations

, 5; = 1011z; I =0,454\; o- meaSurement; ---- large aspect ratio
theory; --- two-dimensional theory.

part. This deviation cannot be immediately attributed to the

influence of a Reynolds number effect, because there is a certain

scatter in the measured values, which is unavoidable because of

the tunnel turbulence. On the other hand, any deviation of the

measured value of the reference line would be transferred to all

of the measured points.
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Figures 64 and 65. Pressure distribution ~ R .+i over

sweptback wing for rudder rotational oscillations; ;A=3,1; -v=
Gjz; lwfl 0,7521; -0- measurement; - large aspect ratio theory;
-.- two-dimensional theory.
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Figures 66 and 67. Pressure distribution 7r=.Ci over
sweptback wing for rudder rotational oscillations for two
different Reynolds numbers: A= .5; !l'I = o.44

-0- Re = 1i, 64. o10- = 10 Hz
-- .Re = 0; 98 106; v = 6 Iz measuremenft

---- large aspect ratio theory; -.- two-dimensional theory.___
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As already established for the rectangular wings, the

spatial derivatives are far below the theoretical values [32]

for rudder rotational oscillations of the sweptback wing. This

result is emphasized by plotting the aerodynamid and moment /96

derivatives of both wing shapes, as was done in Figures 68 to 75.

Here the measured aerodynamic force derivatives lie considerably

below the values for the large aspect ratio theory already for

the aspect ratio A = 3.1. At A = 2.5, they only amount to about

60% of the theory. The deviations of the moment derivatives are

even larger. This fact can be seen from the pressure distribution

over the rudder, because the measured values deviate the most

from the theoretical values at the trailing edge; but here again,

it is the pressures which. have the greatest effect on the rudder

moment. This phenomenon is primarily to be observed in the real

part (see Figures 54, 56, 64, and 66).

The measurement results clearly show that the aerodynamic

forces and moments on oscillating rudders cannot be given with

sufficient accuracy even by the large aspect ratio theory. No

usable results could be expected from the two-dimensional theory

for this oscillation form, because there are clear deviations

already when measurements are carried out with two-dimensional

flow [39]. The reasons for this are primailytheinfluences of the/

friction boundary layer (Kutta condition) which is only

considered phenomenologically in the theory. In addition, the

effects of profile thickness and rudder slit play a role here,

which is also not considered by the theory.

It is possible and likely that this discrepancy will be

reduced by improving the solution methods of the three-dimensional

lifting surface theory. The main task consists in the theoretical

consideration of all the friction influences, which has not been

successful up to the present. At the present time, nothing else
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Figure 68. Global wing aerodynamic forces and moments over
rectangular wing for rudder rotational oscillations.

- real part measurement at
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A- imaginary partmeasurement at -
-.- large aspect ratio theory; --- two-dimensional theory.
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Figure 69. Global aerodynamic forces and moments over

rectangular wing for rudder rotational oscillations.

o- real part- - -
measurement at Re 1, . const

-.- large aspect ratio theory
--- two-dimensional theory
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Figure 70. Global aerodynamic forces and moments over

rectangular wing for rudder rotational oscillations.
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Figure 71. Global aerodynamic forces and moments over
rectangular wing for rudder rotational oscillations.

o- real part aomeasurement at Re =1.1061 = const
A- imaginary part)
-.- large aspect ratio theory
--- two-dimensional theory.
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Figure 72. Global wing aerodynamic forces and moments over
sweptback wing for rudderrotational oscillations.

o- real parto- r part measurement at Rei. . 10 = const

- real part

o- real part measurement at Re = 1,6410 - , . n . .

A- imaginary part
-- large aspect ratio theory
--- two-dimensional theory
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Figure 73. Global wing aerodynamic forces and moments over
sweptback wing for rudder rotational oscillations,

o- real part
S "measurement at .. e = 10 const

A- imaginary part

- real part..
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rl part measurement at .e 1"4- o .. 0. 5.o-

-*- large aspect ratio theory
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89
° 82



0,8

7rrc

* *

- .

re -16

Trnc C

. *

0O 0,2 0,4 0.6 /Iw QI

Figure 14. Global wing aerodynamic forces and moments over
sweptback wing for rudder rotational oscillations.

o- real part 6

A- imaginary part
*- real part 6 6- reimaginary part measurement at Rc '1, 4.l10 - 0,5510
A- imaginary part
-.- large aspect ratio theory
--- two-dimensional theory
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Figure 75. Global wing aerodynamic forces and moments over
sweptback wing for rudder rotational oscillations.

o- real part - imaginary part measurement at Re= 1, = constA- imagin ary part
- real part measurement at Rne =,4. 1o . , - . 06
A- imaginary part .

-- large aspect ratio theory
--- two-dimensional theory
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can be done but to reduce the theoretical pressures by the

correction factors, which can be obtained from the present

measurements and similar ones made with other wings [42].

Figures 72 to 75 do not show a clear influence of Reynolds

number. Considering the large deviations between the measured

results and the theories considered, one can at least say that

a possible Reynolds number influence will continue to be /105

negligible as long as no better theory becomes available.

7.3.4. Simultaneous fin and rudder rotation

Figures 76 and 77 show a pressure distribution for simul-

taneous fin and rudder oscillations of the rectangle model. The

phase angle between the osdillation forms is 1800. The fin

carries out rotational motions around the neutral axis. The

rotational amplitude of the rudder is almost twice as great as

that of the fin. Therefore, the singularity at the rudder slit

is just as pronounced. Except for the outermost section, the

agreement between measured values and large aspect ratio theory

is very good. The reason for this is probably that the deviations

of the theory for pure wing oscillations and for pure rudder

oscillations cancel to an increased degree when both oscillation

forms are superimposed, the more the phase displacement approaches

1800. / This is also true for the two-dimensional theory in the

area of the wing root. For the case where the phase displacement

between the two oscillation forms vanishes, we should expect an

addition of the theoretical deviations.

The measurement confirms the superposition principle of the

two theories under consideration. As far as flutter calculations

are concerned, it is remarkable that the deficiencies of the

large aspect ratio theory for rudder oscillations discussed in
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Figures 76 and 77. Pressure Distribution P = P' + iP' ' over
rectangular wing for simultaneous rotational oscil-lations- around
axis 2 and around the rudder rotational axis A ,s 5; 6 =180; , 6Hz;
'Iw ' =0-o 15;] 0, 0079; C = 0,0140

-o- measurement; large aspect ratio theory; --- two-dimensional
theory.
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the previous section are not as serious as they first appear,

because aircraft rudders are often tuned so softly that they

will oscillate out of phase with the fin. Apparently, the

large aspect ratio theory would produce good results in flutter

calculations of such aircraft.

8. Summary /107

Numerous pressure distribution measurements over oscillating

half-wing models in incompressible flow were carried out for

an experimental test of three unsteady lifting surface theories.

We have considered a lifting surface theory, a lifting line

theory, and the exact two-dimensional theory. The measurements

were done on a rectangular wing and a sweptback wing model

with a constant chord of Z = 0.6 m. The sweepback of the swept-

back wing was 250. In addition, we measured a wing with a full

span rudder with a constant rudder chord of 30% of wing chord.

All wings had a NACA 0012 profile. The models were attached

perpendicularly to a plate in the form of halpwings .The plate

extended from the lower edge of the wind tunnel nozzle through

the 'free test section up to the capture funnel. The plate has

the function of a symmetry plane, and the half-model can be

considered to be reflected at this plane. The aspect ratio of

the models could be reduced from A = 3.1 to A = 2.5.

The models were excited to perform pitch oscillations around

various axes perpendicular to the incident flow direction. Also,

rudder rotational oscillations around the rudder leading edge

were performed. Measurements of simultaneous fin and rudder

rotational motions were carried out for the rectangular wing as

well. The wind tunnel measurements were carried out at the

reduced frequencies Iw*l = 0.13 to 0.76, as well as for steady

flow (w* = 0). They were complemented .by measurements of

oscillations in quiet air.
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In the case of wing pitch oscillations, the measurement

results agree well with. the lifting surface method, The theory

of the large aspect ratio lifting surface (lifting line method)

is quite favorable. It represents an essential improvement of

the two-dimensional theory.

In the case of rudder rotational oscillations, the large

aspect ratio theory produces good agreement for the aspect ratio

A = 3.1. At A = 2.5, the deviations are quite large, however. /108

Especially the measured derivatives of the rudder aerodynamic

force and the rudder moment are considerably below the theore'-r

tical values. These deviations are probably primarily due-tof

the friction influences which are ignored in the theory. However,

we were not able to establish any noticeable influence of

Reynolds number on the measurement results for the investigated

range between Re = 0.55 ' 106 to 1.6 ' 106.

When there are simultaneous rotational oscillations of the

fin and of the rudder, the measured pressure distribution agrees

well with the large aspect ratio theory. The reason for this is

that the deviations in the theory for pure wing-oscillations and

for pure rudder oscillations cancel to a considerable extent

when these two oscillation forms are superimposed, if the

oscillations are performed out of phase, that is, with a phase

displacement of 1800.
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APPENDIX

Auxiliary Functions n( g /114

1(v) .- + sinp

2(p) (r - p) (1 + 2 cos p) + sin p (2+ cosy)

3() = - + sing cosip

4(p) = ( - p) *2 cosp + sinp (2 + cos2

5() sinp • (1- cos9p)

(p) 2(i - p) + sinp * (2 - cosP) (1+ 2 cosp)

() = (" -) (+ 2 cos g)

1 22+ sinp (8 + 5 costp +4 cos p - 2 cos p)

(p) (i - p) (-I + 2 cosgp) + sinp (2 - cosp)

() O) g)10 5

12 ( p) 2 ( 4 cos2 p) + (r - p) sinp cosp

2 2 5 2(7 + 2 cos 2p) + sin 2 (2 + cos 2)

( 3 1 (p) = - p - sin p

3 =N if -p + sin p(1 + 2 cosp)

'35(4)" = 2 sin424

3 6) 432( 3(P) + 2 sin4

I 4P37 F3(g)) -3 3( y




